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CNRS, Laboratoire de Physique Théorique de l’ENS, 24 rue Lhomond, 75231 Paris, Cedex 05,
France

E-mail: biroli@physique.ens.fr andmonasson@physique.ens.fr

Received 1 March 1999

Abstract. Geometrical disorder is present in many physical situations giving rise to eigenvalue
problems. The simplest case of diffusion on a random lattice with fluctuating site connectivities is
studied analytically and by exact numerical diagonalizations. Localization of eigenmodes is shown
to be induced by geometrical defects, that is sites with abnormally low or large connectivities. We
expose a ‘single defect approximation’ (SDA) scheme founded on this mechanism that provides an
accurate quantitative description of both extended and localized regions of the spectrum. We then
present a systematic diagrammatic expansion allowing to use SDA for finite-dimensional problems,
e.g. to determine the localized harmonic modes of amorphous media.

Since Anderson’s fundamental work [1], physical systems in the presence of disorder are well
known for exhibiting localization effects [2]. While most attention has been paid so far to
Hamiltonians with random potentials (e.g. stemming from impurities), there are situations in
which disorder also originates from geometry.

Of particular interest among these are the harmonic vibrations of amorphous materials such
as liquids, colloids, glasses, etc around random particle configurations. Recent experiments on
sound propagation in granular media [3, 4] have stressed the possible presence of localization
effects, highly correlated with the microscopic structure of the sample. The existing theoretical
framework for calculating the density of harmonic modes in amorphous systems was developed
in liquid theory. In this context, microscopic configurations are not frozen but instantaneous
normal modes (INM) give access to short time dynamics [5]. Wu and Loring [6] and Wan
and Stratt [7] have calculated good estimates of the density of INM for Lennard-Jones liquids,
averaged over instantaneous particle configurations. However, localization–delocalization
properties of the eigenvectors have not been considered.

Diffusion on random lattices is another problem where geometrical randomness plays a
crucial role [8]. Long-time dynamics is deeply related to the small eigenvalues of the Laplacian
on the lattice and therefore to its spectral dimension. Campbell suggested that diffusion on
a random lattice could also mimic the dynamics taking place in a complicated phase space,
e.g. for glassy systems [9]. From this point of view, sites on the lattice represent microscopic
configurations and edges represent allowed moves from one configuration to another. At low
temperatures, most edges correspond to very improbable jumps and may be erased. The tail
of the density of states of the Laplacian on random graphs was studied by means of heuristic
arguments by Bray and Rodgers [10]. Localized eigenvectors, closely related to metastable
states are of particular relevance for asymptotic dynamics.

0305-4470/99/230255+07$19.50 © 1999 IOP Publishing Ltd L255



L256 Letter to the Editor

Remarkably, the above examples lead to the study of the spectral properties of random
symmetric matricesW sharing common features. In amorphous media, the elastic energy is
a quadratic function of the displacements of the particles from their instantaneous ‘frozen’
positions. The INM are the eigenmodes of the stiffness matrixW . As for diffusion on random
lattices,W simply equals the Laplacian operator. In both cases, each row ofW is comprised
of a small (with respect to the sizeN of the matrix) and random number of non-zero coefficients
Wij and most importantly, diagonal elements fluctuate:Wii = −

∑
j (6=i) Wij†.

In this letter, we present a quantitative approach to explain the spectral properties and,
particularly, localization effects of such a random matrixW in the simplest case, that is when all
off-diagonal elements ofW are independent random variables. Our analytical approximation is
corroborated by exact numerical diagonalizations. We then expose a systematic diagrammatic
expansion allowing for the study of more realistic models in the presence of correlatedWij .

The spectral properties ofW can be obtained through the knowledge of the resolvent
G(λ + iε): that is, the trace of((λ + iε)1−W )−1 [2]. Denoting the average over disorder by
(·), the mean density of states is given by

p(λ) = − 1

π
lim
ε→0+

ImG(λ + iε). (1)

The averaged resolvent is then written as the propagator of a replicated Gaussian field theory
[2]:

G(λ + iε) = lim
n→0

−i

Nn

∫ ∏
i

dEφi
N∑
k=1

Eφ2
k

∏
i

zi
∏
i<j

(1 +uij )

where

zi ≡ z( Eφi) = exp

(
i

2
(λ + iε) Eφ2

i

)
(2)

uij = exp

(
i

2
Wij ( Eφi − Eφj )2

)
− 1. (3)

Replicated fieldsEφi aren-dimensional vector fields attached to each sitei. To lighten notations,
we have restricted ourselves in (3) to the scalar case. We shall focus later onW having an
internal dimension, as in the INM problem.

In the uncorrelated case, theWij (i < j ) are independently drawn from a probability
law P. To take into account geometrical randomness only, we focus on the distribution
P(Wij ) = (1− q

N
)δ(Wij ) + q

N
δ(Wij − w)‡. Such a bimodal law merely defines a random

graph: i andj can be said to be connected if and only ifWij does not vanish. Due to the
scaling of the edge-probabilityq

N
, the mean site-connectivityq remains finite for large sizes

N . We rescale the eigenvalues by choosingw = − 1
q

to ensure that the support of the spectrum
is positive and bounded whenq →∞ [10].

Numerical diagonalizations of the random LaplacianW have been carried out for different
sizes, up toN = 3200. To each eigenvectorψi,` of eigenvalueλ` normalized to unity is
associated the inverse participation ratiow4

` =
∑

i |ψi,`|4. We then definew4(λ) dλ as the

† SuchW matrices are indeed expected in systems where(1, 1, . . . ,1) is an eigenvector with zero eigenvalue: the
elastic energy is left unchanged under a global translation of all particles whereas, in the diffusion case, the equilibrium
probability distribution is uniform over all sites.
‡ For simplicity we have not considered fluctuations of the connections strengths. To take into account the latter, one
has only to average the last term of equation (4) over the probability law ofw. For a Cauchy distribution we have
verified that EMA is already able to capture localization effects due to fluctuations ofw; whereas SDA accounts also
for local geometric fluctuations and is in better agreement with numerical results. Notice that the fluctuations ofw

smear out the peaks observed in figure 1.
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Figure 1. Density of statesp(λ), inverse participation ratiow4(λ) and connectivity of the centres
c(λ) (divided byq) averaged over 2000 samples forq = 20,N = 800 (all solid curves). The
bottom parts of the oscillations ofw4 at small and largeλ are suppressed due to the statistical
shortfall of eigenvalues. Dotted and dashed curves respectively show the EMA and (the extended
region of) the SDA spectra. Inset: oscillations ofw4(λ) for N = 100, 200, 400, 800, 1600 and
3200 from top to botton and fluctuations ofc′(λ) (divided byq) for N = 100, 200, 1600 (same
symbols) and 0.46 λ 6 0.5.

sum ofw4
` over allψi,` lying in the rangeλ 6 λ` 6 λ + dλ, divided by the numberNp(λ) dλ

of such eigenvectors. Figure 1 displaysp(λ) andw4(λ) for a mean connectivityq = 20†.
The central part of the spectrum (λ− < λ < λ+) has a smooth bell shape and corresponds to
extended states. For increasing sizesN and at fixedλ,w4 vanishes as 1/N and the breakdown
of this scaling identifies the mobility edges:λ− ' 0.47±0.01 andλ+ ' 1.67±0.03. Outside
the central region, that is for small or large eigenvalues, the eigenstates become localized and
the density exhibits successive regular peaks.

We have measured for each eigenvectorψi,` the connectivityc` of its centre, that is the site
i0 with maximum component|ψi0,`|. The mean connectivityc(λ) of the centres of eigenvectors
having eigenvalueλ is plotted figure 1. It is a smooth monotonous function ofλ in the extended
part of the spectrum. In the localized region,c(λ) is constant over a given peak and integer-
valued (c 6 c− = 10 on the left side of the spectrum,c > c+ = 33 on the right side); the
centre connectivity abruptly jumps whenλ crosses the borders between peaks. Furthermore,
table 1 shows the good agreement between the weight of peak associated to connectivityc and
the fraction of sites havingc neighbours, given by a Poisson law of parameterq†.

Therefore, numerics indicate that localized eigenvectors are centred on geometrical

† We have chosenq � 1 to avoid trivial localization effects due to non-percolating isolated clusters of sites. Similar
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Table 1. Weightsp (i.e. integrated density of eigenvalues belonging) of the peaks and corresponding
eigenvaluesλ obtained from numerical simulations (NUM) and SDA for low connectivitiesc.
λNUM is measured at the top of the peak with absolute error±0.0025 whereas the relative error
on pNUM is about 10% (except for thec = 10 peak). A similar agreement is reached for large
connectivities.

c 3 4 5 6 7 8 9 10

λNUM 0.138 0.185 0.230 0.275 0.320 0.360 0.402 0.440
λSDA 0.140 0.186 0.231 0.276 0.319 0.361 0.400 0.435

pNUM × 104 0.025 0.096 0.566 1.607 4.70 10.75 25.14<50
pSDA × 104 0.027 0.134 0.532 1.747 4.88 11.76 24.54 42.85

defects, that is on sites whose number of neighbours is much smaller or much larger than
the average connectivity. To support this observation, it is instructive to consider a simpler
model including a unique defect, i.e. a Cayley tree with connectivityc for the central site
andq + 1 for all other points [11] (locally a random graph is equivalent to a tree since no
loops of finite length are present). Looking for a localized stateψi with a radial symmetry
ψi = ψd(i) whered(i) is the distance between sitei and centre, the eigenvalue equations
readc(ψ0 − ψ1) = qλψ0 and (q + 1)ψd − qψd+1 − ψd−1 = qλψd for d > 1 [11]. The
eigenvalue problem reduces to the search of the solution of a homogeneous linear difference
equation of order two (equation ford > 1) fulfilling a boundary condition (equation ford = 0).
After a little algebra we have found that strong defects, such that|q − c| > √q give rise to
localized states around the central site with an eigenvalueλ = c

q
(1− 1

q−c ). The predicted
connectivities at mobility edges (c− = 15 andc+ = 25 forq = 20) are in poor agreement with
numerical findings. A more refined picture requires one to take into account the connectivity
fluctuations of the neighbours of the central site. We have thus considered a Cayley tree with a
coordination numberc for the central site,c′ for the nearest neighbours andq + 1 for all other
points. We have found that localized states due to weak (resp. strong) central connectivity
c can disappear and become extended if the connectivity of the neighboursc′ reaches large
(resp. small) values. In other words, a defect can bescreenedby an opposite connectivity
fluctuation of its surrounding neighbours. Numerics supports this scenario. Asλ varies,w4(λ)

exhibit oscillations (interpreted as finite-size contributions coming from extended states) of
rapidly decreasing amplitudes with increasingN . These oscillations are correlated (positively
for smallc and negatively for largec) with the fluctuations of the neighbours connectivityc′(λ)
around its mean valueq + 1, see inset of figure 1.

Let us see how the above results may be recovered from theory. Due to the statistical
independence of theWij , theuij (3) interactions are averaged out separately [10]. The resulting
theory is, of course, invariant under any relabelling of the sitesi and depends on the fields
Eφi through the densityρ( Eφ) of sitesi carrying fieldsEφi = Eφ only [12]. The functional order
parameterρ( Eφ) is found when optimizing the ‘free-energy’ [10, 12]

ln4[ρ] =
∫

dEφ ρ( Eφ)[ln z( Eφ)− ln ρ( Eφ) + 1] +
q

2

∫
dEφ d Eψ (e−i( Eφ− Eψ)2/2q − 1)ρ( Eφ)ρ( Eψ) (4)

under the normalization constraint
∫

dEφ ρ( Eφ) = 1; z( Eφ) has been defined in (2). This order

results have been obtained forq = 10.
† Simulations on random lattices withfixedconnectivityq = 20 show no localization eigenstates. The resulting
spectrum is in excellent agreement with the EMA prediction.
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parameter is simply related to the original random matrix problem through

ρ( Eφ) = 1

N

N∑
i=1

Ci exp

(
i Eφ2

2[(λ + iε)1−W ]−1
ii

)
. (5)

TheCi are normalization constants going to unity asn vanishes. Therefore, the averaged
resolvent readsG(λ + iε) = −i lim n→0

∫
dEφ ρ( Eφ)(φ1)2.

Finding an exact solution to the maximization equationδ ln4/δρ( Eφ) = 0 seems to be a
hopeless task. This is a general situation, which arises in the study of the physics of dilute
systems (for the case of sparse random matrices see, for example, [10, 13] ). Identity (5) may,
however, be used as a starting point for an effective medium approximation (EMA). In the
extended part of the spectrum, we expect all matrix elements appearing in (5) to be of the same
order of magnitude and thusρ( Eφ) to be roughly Gaussian. EMA is therefore implemented by
inserting the Gaussian ansatz

ρEMA( Eφ) = (2π ig(λ))−
n
2 exp

(
i Eφ2

2g(λ)

)
(6)

into functional4 (4). The average EMA resolventg is then obtained through optimization
of ln4[g(λ)]. The resulting spectrum, which is given by the imaginary part ofg divided by
minusπ , is shown in figure 1. As expected, EMA gives a sensible estimate of the spectral
properties in the extended region and of the mobility edgesλEMA− = 0.468,λEMA+ = 1.732.
However, EMA is intrinsically unable to reflect geometry fluctuations and thus the presence
of localized states (see footnote, p 258).

To do so, we start by writing the extremization condition of ln4 overρ as

ρ( Eφ) = H[ρ]( Eφ) (7)

where the functionalH may be expanded as

H[ρ]( Eφ) = hz( Eφ)
∞∑
k=0

e−qqk

k!

[ ∫
d Eψ ρ( Eψ)e−i( Eφ− Eψ)2/2q

]k
. (8)

h is a multiplicative factor equal to unity in then → 0 limit. Equations (7) and (8)
describe an elementary lattice of one central site connected tok neighbours according to
a Poisson distribution of meanq. Neighbours carry information about the random matrix
elements through the order parameterρ( Eψ) (5) and interact with the central site via kernel
exp(−i( Eφ− Eψ)2/2q) ((3), (8)). Self-consistency requires that the resulting order parameter at
central site equalsρ [14]. Bearing in mind the localization mechanism unveiled in previous
paragraphs, we propose asingle defect approximation(SDA). SDA amounts to making the
central site interact withk neighbours belonging to the effective medium defined above. Since
EMA precisely washes out any local geometrical fluctuation, we partially reintroduce them by
allowing the connectivityk of the central site (the defect) to vary. The SDA order parameter
is thus obtained through an iteration of equation (7)

ρSDA( Eφ) = H[ρEMA]( Eφ). (9)

Using the EMA resolventg (6), we have computed the SDA spectrum forq = 20. The SDA
extended part is shown to be in better agreement with numerical results than the EMA in
figure 1. Improvement is even more spectacular for localized states that were absent within
EMA. We have found Dirac peaks whose weights and eigenvalues are listed table 1. The
agreement with numerical results is quite good. We have verified analytically that SDA peaks
do correspond to localized states by calculating limε→0[εG(λ + iε)G(λ− iε)] [15] using SDA
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with two groups of replicas. This quantity gives also access tow4(λ), whose value seems
slightly higher than numerical measures close to the mobility edges.

Starting from any sensibleρ, successive iterations of equation (7) would also provide
more and more accurate descriptions of the ‘fractal’ structure of the localized peaks but at the
price of heavier and heavier calculations. Besides being theoretically founded, SDA has the
advantage that a single iteration from EMA (which is easily computable) succeeds in capturing
localized states in a quantitative way (see footnote, p 256).

In general, the components ofW are correlated and the average over disorder requires an
expansion in terms of the connected correlation functions of theuij interactions∏

i<j

(1 +uij ) = exp

(∑
i<j

uij + 1
2

∑′

i<j,k<l

uijukl
c + · · ·

)
(10)

where the prime indicates that the sum runs over different pairs of sites. Free energy (4)
corresponds to the case where all terms in (10) but the first one vanish. The presence of
these cumulants (of order 2, 3, . . . in u) will result in the addition of cubic, quartic, etcρ( Eφ)
interactions terms to ln4. Although calculations become more difficult, the existence of a
variational free energy ln4 is preserved. This is all that is needed to derive EMA and the
optimization equation (9).

Let us see how SDA can be implemented to determine the INM spectrum of amorphous
media. We restrict ourselves to liquids but our approach could also be applied to glasses using
the formalism recently developed by Mézard and Parisi [16]. Particlesi are individuated by
their positionsxi and interact through a two-body potentialV (xi −xj ) (hereafter bold letters
will denote vectors in theD-dimensional real space). For a given microscopic configuration,
INM are the eigenmodes of theD × N -dimensional matrixWij = ∂2V (xi − xj )/∂xi∂xj
(i 6= j ). The calculation of the spectrum and the average over particle configurations (with the
equilibrium Boltzmann measure at inverse temperatureβ) can be performed at the same time
by introducing a generalized liquid [6, 7]. Each particle is assigned a ‘position’ri = (xi , Eφi )
and the generalized fugacity readsz∗(ri ) = yz(Eφi ) wherey is the liquid fugacity andz is
defined in (2). The grand-canonical partition function4may then diagrammatically expanded
in powers of the Mayer bondb(ri , rj ) = exp(−βV (xi − xj ) + i

2Wij (Eφi − Eφj )2)− 1 (for the
sake of simplicity, the summation over theD2 internal indices ofW is not written explicitly).
With these notations,4 coincides with formula (3.21) of [17]. It is now straightforward to
take advantage of the variational formulation of the diagrammatic virial expansion by Morita
and Hiroike [17]. The generalized densityρ(r) = ρ(x, Eφ) of particles optimizes

ln4[ρ] =
∫

dr ρ(r)[ln z∗(r)− ln ρ(r) + 1] + S (11)

whereS is the sum of all diagrams composed of bondsb(r, r′) and vertices weighted with
ρ(r) that cannot be split under the removal of a single vertex, see equation (4.6) of [17]. Due to
translational invariance in real space,ρ does not depend onx and we are left with a variational
functional4 of the densityρ(Eφ). Note that (11) contains (4) as a special case whenS includes
only the simplest single-bond diagram. The random graph model we have studied in this letter
may be seen as a physical system for which keeping the first coefficient of the virial expansion
only is exact.

To our knowledge, Morita and Hiroike’s work has not been used so far in the context
of INM theory as a short-cut to avoid tedious diagrammatical calculations. In addition, the
variational formulation of [17] allows one to implement SDA in a practical way. We are
currently attempting to apply the present formalism to characterize localized eigenstates in
two- and three-dimensional granular media.
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[16] Mézard M and Parisi G 1999Phys. Rev. Lett.82747
[17] Morita T and Hiroike K 1961Prog. Theor. Phys.25537


